M.Math. IInd year
 First semestral Backpaper exam 2020-21
 Number Theory
 Instructor : B.Sury
 Answer ALL SIX questions.

Q 1. Let $p>2$ be a prime and suppose a is a primitive root $\bmod p$. Prove that either a or $a+p$ is a primitive root $\bmod p^{n}$ for all $n>1$.

OR
Prove that a Fermat number $2^{2^{n}}+1$ can never be a prime power p^{r} with $r \geq 2$.

Q 2.
(i) Spell out when the Jacobi symbol $\left(\frac{a}{N}\right)$ is 1 .
(ii) Let $p_{1}, p_{2}, \cdots, p_{n}$ be distinct, odd primes. Show the existence of a positive integer N such that the Jacobi symbol $\left(\frac{N}{p_{1} p_{2} \cdots p_{n}}\right)=-1$.

OR

Let a, b be coprime integers and c be a positive integer. Use the Chinese remainder theorem to prove there exists an integer n such that $a+n b$ is coprime to c.

Q 3. Let $d \equiv 3 \bmod 4$ be square-free, positive integer. Let \mathbf{O} be the ring $\mathbf{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$. Determine the group of units of \mathbf{O}.

OR
For a positive integer $n>2$, show that the number $\Psi(n)$ of positive integers $a \leq n$ such that $(a(a+1), n)=1$ equals $n \prod_{p \mid n}(1-2 / p)$ where the product is over the primes dividing n.

Q 4. Use the quadratic reciprocity law to deduce that if p is any odd prime and $q \equiv 3 \bmod 4$ is a prime, then q is a quadratic residue $\bmod p$ if and only if $p \equiv \pm a^{2} \bmod 4 q$ for some odd a relatively prime to q.

OR
Let $p=a^{2}+b^{2}$ be a prime $\equiv 1 \bmod 4$. Prove that $\left(\frac{a+b}{p}\right)=(-1)^{\left((a+b)^{2}-1\right) / 8}$.

Q 5. If $a x^{2}+b x y+c y^{2}$ is a reduced, positive-definite integral form and $a u^{2}+b u v+c v^{2} \leq a+|b|+c$ for some $(u, v)=1$, prove that $a u^{2}+b u v+c v^{2}$ must be one of $a, c, a \pm|b|+c$.

Q 6.

(i) Obtain the value of the periodic, simple, continued fraction $[1 ; \overline{2,3}]$.
)ii) Obtain the simple, continued fraction expansion of $\sqrt{a^{2}+1}$ for any natural number a.

