M.Math. IInd year First semestral Backpaper exam 2020-21 Number Theory Instructor : B.Sury Answer ALL SIX questions.

Q 1. Let p > 2 be a prime and suppose *a* is a primitive root mod *p*. Prove that either *a* or a + p is a primitive root mod p^n for all n > 1.

OR

Prove that a Fermat number $2^{2^n} + 1$ can never be a prime power p^r with $r \ge 2$.

Q 2.

(i) Spell out when the Jacobi symbol $\left(\frac{a}{N}\right)$ is 1. (ii) Let p_1, p_2, \dots, p_n be distinct, odd primes. Show the existence of a positive integer N such that the Jacobi symbol $\left(\frac{N}{p_1 p_2 \cdots p_n}\right) = -1$.

OR

Let a, b be coprime integers and c be a positive integer. Use the Chinese remainder theorem to prove there exists an integer n such that a + nb is coprime to c.

Q 3. Let $d \equiv 3 \mod 4$ be square-free, positive integer. Let **O** be the ring $\mathbf{Z}[\frac{1+\sqrt{-d}}{2}]$. Determine the group of units of **O**.

\mathbf{OR}

For a positive integer n > 2, show that the number $\Psi(n)$ of positive integers $a \le n$ such that (a(a+1), n) = 1 equals $n \prod_{p|n} (1-2/p)$ where the product is over the primes dividing n.

Q 4. Use the quadratic reciprocity law to deduce that if p is any odd prime and $q \equiv 3 \mod 4$ is a prime, then q is a quadratic residue mod p if and only if $p \equiv \pm a^2 \mod 4q$ for some odd a relatively prime to q.

OR

Let $p = a^2 + b^2$ be a prime $\equiv 1 \mod 4$. Prove that $\left(\frac{a+b}{p}\right) = (-1)^{((a+b)^2-1)/8}$.

Q 5. If $ax^2 + bxy + cy^2$ is a reduced, positive-definite integral form and $au^2 + buv + cv^2 \le a + |b| + c$ for some (u, v) = 1, prove that $au^2 + buv + cv^2$ must be one of $a, c, a \pm |b| + c$.

Q 6.

(i) Obtain the value of the periodic, simple, continued fraction $[1; \overline{2,3}]$.

)ii) Obtain the simple, continued fraction expansion of $\sqrt{a^2 + 1}$ for any natural number a.